#i DEVELOPER
WORLD THE FAST

TRACK FROM
MIND TO MARKET

Tutorial

_ debugging for NetBeans

with Sony Ericsson phones

_ Getting started with on-device

.......
.......
.......
.......

6 Sony Ericsson

.......
.......
.......

s g September 2006

Tutorial | On-device debugging for NetBeans

About this tutorial

This tutorial has been authored by Thomas Bailey, a Product Tools Manager within the Sony Ericsson
Developer Program.

The document describes how to get started with on-device debugging with NetBeans IDE 5.0, NetBeans
Mobility Pack 5.0 and a Sony Ericsson K800. It is intended for developers of Java™ applications who
want a background to on-device debugging technology and how to use it.

It is assumed that the reader is familiar with the basics of the Java Platform, Micro Edition, CLDC.

This tutorial is published by:

Sony Ericsson Mobile Communications AB,
SE-221 88 Lund, Sweden

Phone: +46 46 19 40 00
Fax: +46 46 19 41 00
www.sonyericsson.com/

© Sony Ericsson Mobile Communications AB,
2006. All rights reserved. You are hereby granted
a license to download and/or print a copy of this
document.

Any rights not expressly granted herein are
reserved.

First edition (September 2006)
Publication number: EN/LZT 108 9075 R1A

This document is published by Sony Ericsson
Mobile Communications AB, without any
warranty”. Improvements and changes to this text
necessitated by typographical errors, inaccuracies
of current information or improvements to
programs and/or equipment, may be made by
Sony Ericsson Mobile Communications AB at any
time and without notice. Such changes will,
however, be incorporated into new editions of this
document. Printed versions are to be regarded as
temporary reference copies only.

*All implied warranties, including without limitation
the implied warranties of merchantability or fitness
for a particular purpose, are excluded. In no event
shall Sony Ericsson or its licensors be liable for
incidental or consequential damages of any
nature, including but not limited to lost profits or
commercial loss, arising out of the use of the
information in this document.

September 2006

Tutorial |

Sony Ericsson Developer World

On www.sonyericsson.com/developer, developers will find documentation and tools such as phone White

papers, Developers guidelines for different technologies, SDKs (Software Development Kits) and relevant
APIs (Application Programming Interfaces). The Web site also contains discussion forums monitored by
the Sony Ericsson Developer Support team, an extensive Knowledge base, Tips and tricks, example code

and news.

Sony Ericsson also offers technical support services to professional developers. For more information
about these professional services, visit the Sony Ericsson Developer World Web site.

Document conventions

Terminology

JPDA

JDI

JDWP

KDWP

JVM

KVM

SDK

Java Platform Debugger Architecture.

The Java Platform Debugger Architecture provides the infrastructure to build end-user
debugger applications for the Java Platform, Standard Edition (Java SE).

Java Debug Interface.
An interface for JPDA designed for the Java platform.
Java Debug Wire Protocol.

A protocol that defines the format and requests between a debugger and a Java SE vir-
tual machine.

KVM Debug Wire Protocol.

Subset of JDWP used in a resource constrained environment.

Java Virtual Machine.

A software model of a virtual machine that executes Java byte code.
K-Virtual Machine.

A virtual Machine designed for use in resource constrained environment, created by Sun
Microsystems.

Software Development Kit.

Typically a set of development tools that allows a software engineer to create applica-
tions for a certain software package, software framework, hardware platform, computer
system, operating system or similar.

3 September 2006

www.sonyericsson.com/developer

Tutorial |

IDE Integrated Development Environment.

Suite of tools, usually related to programming, brought together into a visual environ-
ment.

OoDD On-device debugging.
Debugging a phone VM.

Typographical conventions

Code is written in Courier font:

public StringItem getHelloStringItem ()

4 September 2006

Tutorial |

Trademarks and acknowledgements

Java and all Java-based marks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.
End-user license agreement for Sun Java platform, Micro Edition.

1 Restrictions: Software is confidential copyrighted information of Sun and title to all copies is retained
by Sun and/or its licensors. Customer shall not modify, decompile, disassemble, decrypt, extract, or
otherwise reverse engineer Software. Software may not be leased, assigned, or sublicensed, in whole
or in part.

2 Export Regulations: Software including technical data, is subject to U.S. export control laws, including
the U.S. Export Administration Act and its associated regulations, and may be subject to export or
import regulations in other countries. Customer agrees to comply strictly with all such regulations and
acknowledges that it has the responsibility to obtain licenses to export, re-export, or import Software.
Software may not be downloaded, or otherwise exported or re-exported (i) into, or to a national or res-
ident of, Cuba, Iraq, Iran, North Korea, Libya, Sudan, Syria (as such listing may be revised from time to
time) or any country to which the U.S. has embargoed goods; or (ii) to anyone on the U.S. Treasury
Department's list of Specially Designated Nations or the U.S. Commerce Department's Table of Denial
Orders.

3 Restricted Rights: Use, duplication or disclosure by the United States government is subject to the
restrictions as set forth in the Rights in Technical Data and Computer Software Clauses in DFARS
252.227-7013(c) (1) and FAR 52.227-19(c) (2) as applicable.

NetBeans is a trademark or registered trademark of Sun Microsystems, Inc. in the U.S. and other coun-
tries.

Microsoft Windows is either a registered trademark or a trademark of Microsoft Corporation in the United
States and/or other countries.

Bluetooth is a trademark or registered trademark of Bluetooth SIG Inc.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Document history

Change history
2002-09-15 Version R1A Document published on Developer World

&) September 2006

Tutorial |

L g Yo 11 Tt o) 7
How does on-device debugging WOrk?ccceiiiiiiiiiiiieee e 8
Why use on-device debugging?ocueeeiiiiiiieee e 9
Getting started ... s 10
Setting UP the tOOIS e 11

Platform setup in NetBeaNSoocuiiiiiiiiieie e 12
[DT=Y 0T8T Te TT T JE= T8 0T oY1= o 17
Creating @ teSt ProjECTcoii i s 17
Testing the CONNECTIONoeeiiiiiiii e 20
Setting @ breakpointcooo i 23
SettiNg @ WACH ..o s 25
Redirection of output Stre@amseeiiiiiiiiee e 27
L0 oT o T LT =] ' o 28
Further readingcccccmrmmmmmmmmmmmmmmmmmeeees s s s sssssssssssssssssssssssssssnsnnnnes 29

6

September 2006

Tutorial |

On-device debugging refers to the ability to debug a MIDP application while it is executing on a real
device, typically a phone. This tutorial covers the KDWP technology behind on-device debugging and
presents its usage together with the NetBeans 5.0 IDE and Mobility Pack 5.0.

For initial development and prototyping, an emulator, such as the Sun Java Wireless Toolkit (WTK) device
profiles or the Sony Ericsson SDK for the Java ME platform, provides a sufficient and viable environment
for development. However, as complexity increases, particularly when working with 3D or network inten-
sive applications, development on the phone becomes an increasingly attractive proposition to reduce the
number of development cycles by identifying and addressing issues immediately.

A phone is typically regarded as a "black box", where error messages are usually user-orientated and pro-
vide little clue as to a point of failure. On-device debugging addresses this by exposing the virtual machine
allowing Java SE debugging tools to be connected to it, allowing for breakpoints, stepping and variable
watches.

The NetBeans debugger, through the use of the underlying KDWP technology and Mobility Pack, can be
readily used towards a mobile phone VM without requiring any vendor specific plug-ins. The same debug-
ging methodology applied to Java SE applications and can be re-applied when debugging a MIDlet on-
device.

T610 (2003) WS850 (2006)

On-device debugging is found in all Sony Ericsson feature phones going as far back as the T610 in 2003.

7 September 2006

Tutorial | On-device debugging for NetBeans

How does on-device debugging work?

Underlying on-device debugging is KVM debug wire protocol (KDWP), a subset of the more familiar Java
debug wire protocol (JDWP).

JDWP is the protocol used between a debugger and virtual machine designed for usage in a Java SE envi-
ronment. It defines the format of the information and a command set used to request and control the
debugging behaviour of the target VM.

JDWP is one of the layers in the Java Platform Debugger Architecture (JPDA).

Debugger Front End (IDE)

AV

Java Debug Wire Protocol (JDWP)

In the JPDA model, the debugger front end would usually implement the Java Debug Interface (JDI), or
use JDWP directly to communicate with the VM tools interface.

However, the JPDA model can not be directly applied to a small footprint, resource constrained VM found

in a mobile phone. To enable debugging on a mobile VM, KDWP is used in place of JDWP. KDWP imple-
ments only a subset of JDWP therefore reducing the requirements on the phone VM.

8 September 2006

Tutorial | On-device debugging for NetBeans

Together with KDWP, a debug agent or debug proxy (KDP) is introduced. It resides on the host and acts
as a broker between JDWP and KDWP protocols. It serves to move logic from the phone VM to the host
and takes over some of the responsibility of the VM, such as extracting and parsing debugging informa-
tion from the class files and handling JDWP commands not implemented in KDWP.

Debugger Front End (IDE)

[V

Java Debug Wire Protocol (JDWP)

Kilobyte Debug Wire Protocol (KDWP)

The use of the agent allows any JPDA debugger, such as the NetBeans debugger, to be used towards a
phone VM - the debugger is “unaware” that it is debugging a phone VM.

Why use on-device debugging?

The benefits of on-device debugging are particularly useful when considering the variety and number of
phones available on the market today.

Typically Java implementations come from a multitude of different vendors. Proprietary API, such as the
Mascot Capsule 3D engine, may be available. The development kits and emulators, such as Sun Java
Wireless Toolkit (WTK), may provide a useful prototyping environment but can not not always provide an
identical environment to that of the phone.

On-device debugging allows you to quickly locate and resolve an issue in its native environment.

9 September 2006

Tutorial |

In order to illustrate the process of setting up and debugging an application we will use the following tools:

NetBeans IDE 5.0
http://www.netbeans.org/products/ide/
NetBeans IDE is a free Java IDE built on the NetBeans platform.

NetBeans Mobility Pack 5.0
http://www.netbeans.org/kb/50/mobility.html
The NetBeans Mobility Pack 5.0 provides CLDC and MIDP awareness to the NetBeans 5.0 IDE

A Sony Ericsson phone
http://www.sonyericsson.com
All Sony Ericsson feature phones support on-device debugging and require no software modification.

Sony Ericsson SDK for the Java ME Platform
http://developer.sonyericsson.com/getDocument.do?docld=65255

The SDK provides the necessary libraries and emulation for developing towards Sony Ericsson
phones.

Sony Ericsson Developers Guidelines for Java ME, CLDC
http://developer.sonyericsson.com/getDocument.do?docld=65067

The Developer Guidelines are updated frequently and are intended to cover every aspect of Java ME
CLDC development that is Sony Ericsson specific.

Microsoft® Windows® XP, Service Pack 2
Service Pack 2 provision native support for Bluetooth™ wireless technology which will be used to con-
nect to the phone.

10 September 2006

http://www.netbeans.org/products/ide/
http://www.netbeans.org/kb/50/mobility.html
http://www.sonyericsson.com
http://developer.sonyericsson.com/getDocument.do?docId=65255
http://developer.sonyericsson.com/getDocument.do?docId=65067

Tutorial |

Setting up the tools

Having installed NetBeans and Mobility Pack together with the Sony Ericsson SDK for the
Java ME Platform, the available device profiles must be made available to NetBeans using the Java Plat-
form Manager.

The Sony Ericsson SDK for the Java Platform consists of two main branches, emulator profiles and on-
device profiles respectively. This is reflected in the directory structure:

<your installation path>JavaME SDK CLDC
-- OnDeviceDebug

----bin

----1ib

----docs

-- PC_Emulation

This structure follows the UEI (Unified Emulator Interface) specification. The specification intends to
ensure interoperability between IDE and SDK vendors, for example between NetBeans and
Sony Ericsson.

By following the UEI specification in the context of on-device debugging, the IDE regards the on-device
profiles as emulators, removing the need for additional proprietary plug-ins.

11 September 2006

Tutorial | On-device debugging for NetBeans

Platform setup in NetBeans

The Java Platform Manager resides under the Tools menu:

12 September 2006

Tutorial | On-device debugging for NetBeans

By default, the platform list is empty. We need to point NetBeans at the Sony Ericsson SDK for the Java

ME Platform. Click the "Add Platform..." button:

| Nava PlatTorm Manager

x|
=3 1SE Plakfoamn Pames: In._gm
- IS Plokform Folder:. [ifrogeam Phesidavalhd 5,005
Classes | Sources | Javadec |
Plakform Classpathe

bC:tPr ogr i Fles Jarealpied 5.0 05 ratibirjar

fC o e ogr i Pk Jave | icliud 50051 gl Bn, jar
C:(Program Files Javaladkd .5.0_05|reiiblnaesasion. jor

i 'Program Fles) lavaldk] .5.0_051reiiblsse. jar

b [Program Piesh lavaldk] .5,0_08 raiibice, ja
bC:1Pr ogr i Fibed Jaredl e .5, 0_05 et cham ity jar

O \Pr o it Pl Javvalcled 5.0 05 ki

JC Y Program Fes) Java k] .5.0_05) ineiblextdnsns. o

Ko iProgram Fles! davadk] J5.0_05 relibladfocsledat s, o
L (Program Files) larvaidk] .5.0_051retibizdiomnics_provider. i
bC:1Program Fiedh Jarvalded 5,0 _05 retibiaatoongkes] §.jar

FLETone l|

(oo]

heo |

Select the "Java Micro Edition Platform Emulator" option and click "Next >". NetBeans will scan common
directories and attempt to automatically find any relevant SDKs:

[add Javaplatform =
Sheps Select platform bype
1. Select platform bype
. Platform Folders Sedact platfiorm byps b iretal:
3, Deteckad Plabfoems
™ Jaea 2 Standacd Edtion
™ Cughom Jies Micro Edition Plstfons Emulstor
T Jeva Micro Edition ODC Plabform Erulator
ik ([mms] ret | canel | neb |

13

September 2006

Tutorial | On-device debugging for NetBeans

Note that, using the UEI convention, it has automatically recognized the two branches, on-device debug-
ging and emulation. Since we are interested in on-device debugging, check only the “<your installation
path>\JavaME_SDK_CLDC\OnDeviceDebug” entry, then click “Next >":

[adddvabadorm x
SHeps Platoem Felders
St platfore bype St Matforms Lo Debect:

:
i

Ol erylrceae] Lyand D8 CI0CEEC (B dsbionTRTI]
oy e lesME,_S00_CLOCHPC Eradabion[wTiZ

Fired Fiors Sua ME Platform Folderi |

o |[Cmis |0 | _cos | o |

14 September 2006

Tutorial | On-device debugging for NetBeans

NetBeans proceeds to query all the device profiles available in the platform selection. Click "Finish" to
conclude the platform setup:

B asdiovariatiorm

Besariien | Jyeadocs | Sources |
Pl ey Haarre: Iﬁ-:ln’Ellh:l-mﬂ 324 Fer b J-wd-“ﬂ]-lli gt o Cibm g iy Lt i
Pt oy Dt

Dertaic

SomErcsson_F5001, BonwEncrson_I300, SomyEncs san_JP-T, SomiEnceson_am,
SompEnason_F31 0, BorsEnceaon_KS0D, BarmEncaoan_KE0E, BomEncasoa K510,
Sorpragon_WEN), Bormfineiapn KT, GerpEricason_ST00,
SonpErcsson_BT10, BomEnceson_TE 0, BoessEnceson_TE 6, SorEncsson_TE3D,
SompEncason_TEIT, SomEeicsson_W000, BorwEncssan_WID0, BoryEricsson_WS5H],
Sorpbrgagon_WE00, Sorigyeon _WT 00, Serrvmipin_WEDD, SermEndsien_Wi10,
SonpErcason_WA00, SeryEscnson_I1 0010, SoryEriceson_I500, SeewEricrson_I100,
SompSrcason_I515, SoryEncsson_I5 3, SormEncsson_T%5, BomEncsson_IE, =l

e e N .

15 September 2006

Tutorial | On-device debugging for NetBeans

The platform is now ready to be used for development and debugging:

16 September 2006

Tutorial | On-device debugging for NetBeans

Debugging a project

Creating a test project

In order to highlight on-device debugging we create a simple “Hello World” project. Use the Project Wiz-
ard to create a new project, selecting the "Mobile" category and "Mobile Application" project type:

AT

1. [hasse Projedd
E

Ciwoes Prejest

w Feojct: i
O @ 0 Mokt
2] Garassl B mobels s LExiry
] web Mobsle Frommet hom £ cnbirsg MIDP Socarces
0. Irapart Wirslstr Tool# Progect
|:I- Trapert, Mobally ks Fecpect
21 metBeard Phug-n Mok

&1 sanpley

Crscripdind:

Crestrs a nem 2 applic stion in 8 sdardad IDF poisct Fou can sl gemee s s o MIDESE in S project.
Thee pacrect umss i ITH -geeasrated Ank Busld scripd and speecisd baaks fo prepecosts, bad cbdimc e,
preerity, o, cdetaags, sned ceploy' oL SppGation i thes DML srwvinonime,

cont [[wote | rrh | ewen | e |

17

September 2006

Tutorial |

Enter "HelloWorld" as a project name and click "Next >":

[Erewfropet x|
Shepe Prva el lag stion

1. Cherie Praie Prisiedt Hawe! _

2 Maie Sl Lisl el

A Dl Matfirm Selocon "

4| e T o el Praject Location: |24 Broweia. .. I

Proient Foldert [0 Waslioworkd

T Zak pa M Project

[Cemate bk MIDst

coath |[wenn | e | cavd | e |

In order to use the correct device profile, we need to select a suitable emulator platform.

Sony Ericsson uses a platformized approach to implementing and supporting Java technology. With the
announcement of Sony Ericsson Java Platform 7 (JP-7), the SDK device profiles are based on the Java
platform, as opposed to specific phone models as for the earlier Java platforms. For example, a generic
SonyEricsson_JP-7 profile can be used for all JP-7 phone models.

The SDK provides a serial proxy, unrelated to the debug agent, allowing communication between the host
and the phone. When using phones prior to JP-7, the correct phone-specific profile must be selected to
allow the serial proxy to successfully communicate with the phone.

The grouping of phone models on different Java platforms is described in the Developer Guidelines.

18 September 2006

Tutorial | On-device debugging for NetBeans

In our example we use a K800, which is JP-7 phone, and we select the generic SonyEricsson_JP-7 profile
for the emulation:

e 2

g

Chesrke Prient - 23 - -
i Emulstn Platformm: oy Fricnon 50K 7.2.4 Bon e Javis T} FI Pt ormi T On-Cowical =]

e

ctath |[weetn | s | cwed | e

Click the "Finish" button and the new “HelloWorld” MIDlet is created.

19 September 2006

Tutorial | On-device debugging for NetBeans

Testing the connection

Initially we can start by ensuring that the phone is correctly connected and available. Click the "Run Main
Project" button in the toolbar:

=101x
Fis I8 Ye= Kowagets Sosre Bl Bl Bn O Tah Sindes Heb
& A d i
Clp@ vl @ P e g 3@ P
th g noppes X
= Helawiakd SnaTe o [nagn L} F:. ¥ | Sarems -
S5-I e Lo e
At el v sellaf orm [Form) = [
gy HeloMices (ue
5 Tmtiiem
I evitav | | 5 ek
Fal 1
L el Sty
B
A Bk Cosmamarad
A Cael Coommanrad|
tesenitia 0w Ty " o r——a =
i B Dmarc rlicadet | beleirm g O K
o el o] e i j
v e Pk P =
@] Eeare =i e Progertam
[PR S H
v Trbpkeed =
- _-___-___.i
N s]
| :I-I
|] sl L]
PUAM LB SERAEUET AR $TEDU LA =
Brrer 1m Brey Comssn ot
Flesrs 1rp ve dasconndsn sl COamart vha cordsmian
FrEET SIukE 50 peEnaan ches llv-l-l 3
Biukcdeig bl e b

NetBeans uses UEI to launch what it believes to be an emulator. The Sony Ericsson SDK attempts to
launch the connection proxy, connect to a phone and deploy the MIDlet. Since no phone is currently con-
nected, the launch fails and the connection proxy remains in the disconnected state. We need to tweak
the settings to reflect the COM port the phone is connected to.

In this example we will use a serial connection over Bluetooth to connect the phone.

Note: The Serial Port Profile (SPP), a Bluetooth profile specification, is very convenient since it allows
working with the phone without needing to install any drivers.

20 September 2006

Tutorial | On-device debugging for NetBeans

Whilst your Bluetooth stack software usually provides its own Ul, we use the default Windows support to
illustrate creating a serial connection. From the Control Panel, use the "Bluetooth Devices" applet. Assum-
ing you have paired the device, the “Devices” field should contain your phone:

[octonth Devices |
Drvces | Gptons | G0M Pt | Hardere |
Phomay snd modes

=

ddd | Rétreres | :_:_.-_.:I
[ok] coxm | o0 |

Under the COM ports tab, click the "Add" button and create a new outgoing connection:

T =

St By B of O (il] thal o wan' B

21 September 2006

A new COM port will be assigned:

[ictonthDences
Dervices | Opiore COM Porty | imdware |
Then o ier & Ling e COM peorl s epled b, T

gl inPudbeld e fid & (e, bl P et
it v path o B hassoods: de-mie

m [Cirscton !Hﬁ |
Cligoang Tierad Pios

M. | _Feor |
Leam raore shoul fsiooin (M pody.

[Tk] cece | e |

Tutorial | On-device debugging for NetBeans

We proceed to use this new COM port in the connection proxy. Click the “Settings” button in the toolbar
to select the freshly assigned COM port, and then click “Connect”. After connecting, the Connection Set-

tings appear like this:

=% Connection Proxy

Status
'| Connected to KSOG(JP-T) at COMT
Bytes sent: B
Bytes recetwed: 140

22

September 2006

Tutorial | On-device debugging for NetBeans

Setting a breakpoint

A breakpoint allows setting a dynamic point in the program where execution can be paused or cancelled
and the MIDlet behaviour examined.

Using the example created by NetBeans, we set a breakpoint on the creation of a new
helloStringItem instance. We set a breakpoint by pressing CTRL-F8.

The MiIDlet can be debugged on the phone by clicking the "Debug Main Project" button in the toolbar:

CeEd¥Ean @ L e dad 0@

=,)
4f (hallefess == amldd) |
Af Insete pee=init code Bete
helloFors = mew Porminall, sew Tves[] [get_helloStringThemi))):
helloFors. sddl [get_eaciite 11
helloForm. setCommandListener [this) | —|
A Insert poBt-init code kere
1
weturn helloForm:

T F%% Thia methed peruEns inatance for hellofeeinglres coaponent and skould be called @

* frerurn Inscasmce For helloftriegices CONPOMERT
-

public Stringltem get_helloStrimgltem|) |
4f [halloStringlcen == mull) |
i it
o n Tt “Hella”, lazld! "] 2

/ IRIETE POSC=1RiT Codé B

1
return helloftringloeny
]

=
(o — | _rl_l
e o0
e o ox
3]

23 September 2006

Tutorial | On-device debugging for NetBeans

The MiIDlet is compiled and deployed to the phone. Upon execution we quickly hit our breakpoint and

execution is suspended:

Fle Ede View Mwsgste Soace Refster Buld Run OVS Took Window Help ‘!nlli_l
BeR@ LB BN E L e Ja 30D A nDPaal

JPra. 4 X
o HielloWarld
i

"
Some Sownieicn | Rowbeion |4 & DA A B LR AP HHM 0D

=] 48 This method returns insteance for hellodtringltem componsnt and skoald be called i
* freturn Instance fox helleStringlten component
L T
=] public Stringlcen got_helloftrisgitem() |
if (EelleSeeinglten == mall) |

/F ImseEr pre=-init code heee

= EelloSreinglren = mew StringTtem("Helle™, "Hello, Wozld!");

ac here _F

#F Insect poat-imt o
}
rotuam helloStzinglten:
]

2]u

tizer program rumming

Ihised Thossd b eviggsd ot HelloBidier jeve 20,

| |

Breakpoint kit &z line 90 in class kello.HslloMidlec by chre

o0:1 |[IRs]
| Mk Tt Rty | Outpt 7 x| waiches
buslel ol {iSebasg) * | B (debug) = Debugger Comsale -« | Harve
Mraching te besalbes: 1094 =]

ol

Thread Thredd | stopped ot Helobclet. jrea: i,

Pressing CTRL-F5, "Continue button", resumes execution.
Alternatively, we can step over or into breakpoints using F8 or F7 buttons respectively.

Note: Typically an initially re-occurring message of "99%" or "VM not ready" appears when launching a
debugging session. The phone VM runs in a highly optimized state and when debugging, dynamically
reconfigures itself to allow for debugging leading to a delay in initiation of the session.

24 September 2006

Setting a watch

Tutorial | On-device debugging for NetBeans

A watch refers to a variable or expression that is continuously monitored throughout execution.

We reuse the HelloWorld application to create a trivial watch. Select the helloStringItem variable and
assign a watch to it by pressing CTRL-Shift-F7. The variable appears in the “Watches” window where its

state can be monitored.

To allow us to see the contents of the variable before execution proceeds, we need to set a breakpoint on

the return of the method:

i MetBeans IDE 5.0 - Hello¥orkd

Fis Edb Wiess Havigabe Sowece Rofacor Buld Run O Tools Windos Help

CCpd |+ dn @ P 18 & DD

[Frojects a xK
= HeloWarkd
=8 helo

5 [PR s

) sowncesn | Fowbwan |5 b D2 3

¥
relwrs nelloftzingloes; J—
H
A" Thir method returns iostence for exitCommend
* @retarn Instance for exitCommand cosponemt
e) -
wftern{] i | =
res @ [0 [3 3 1838 |[IRS]
oo © x [T weses v x
Dibugger Corncin b, sl (coar-al « [[Typn | Ve [l
af| [~ 9 relestrighem 1] =
= =l

) =
relern helloFozm;

}

=] /"% This mechod returns ioscence for helloString
* frevamn Instance for helleStringltes coapomen
S
=] public Treingleen gob_helloStringltesi) |
if [BelloBcEingltes == mull)
#¢ InseEr pre-imic cofe here
= mew Stringltem|~Hello™
£ Inpect poat-init code hage

| S T P B

25

September 2006

Tutorial | On-device debugging for NetBeans

When debugging the application execution will halt at the return of helloStringItem. The value of the

watch will change in the “Watches” window. The variable can be expanded to show the value assigned
and other attributes:

[Projects 41 %] I Y P |
2 HelkWorkd Source SosenDesgn | FlowDesgn | 5 o T Ty 7 [FFropertes
& helo f = e H
® e GRS [cetsen nebtoromn: -
¥ aftringll .
harr
B F°% This mechod retures inscence £or helloSteing
* @return Inatance for helloScringlten CompOmEn
il
=] public Sccingltes get_belleStringItem(] |
if (helloStzingltes == sulll] [
AFf Inagze pre=inie code heze
helloStringltes = mew StringTtem|(~Hello™
| vigakor o4 x| #¢ Insert posc-imit code hepe
| i
| 1= return helloStringlten;
:]
Mo T Aualibiat * This asthod pevacEs inscance for exivCommand | ——
| g . Bra e rr"...;u Paw pwd elassand AssELE g e _l_l atr .

LT ‘*ﬁ watche
busibdseen {ebsg) * Debugger Consale |
Arraching co Eegalhort: 1337

Usr progoss rasning

Breakpoint hi®t a% lina 91 in class Bello HellaMidia® by ehra

B |

Thread KeH_main stopped o Helobidet jvac91.

26 September 2006

Tutorial | On-device debugging for NetBeans

Redirection of output streams

Though not specifically related to on-device debugging, a convenient feature that is also exposed, is the
redirection of standard output and error output streams.

Typically if an exception occurs while running on the phone VM, determining the cause usually involves
resorting to use alert dialogs or screens. By redirecting output streams, errors are immediately apparent:

=10l x|
Fle Edt Vew Mavgsts Souce Refactr Bubl Run V5 Took Windw Heb

Blp@|+BdNE P JAIDPLR(A NP ad
amse

homts 0% gz torace [] o0
% [hellaworkd Somce soeenDesn | Pewpesn |5 o T P R 9 o [FRwetes
]y [y
7% This mechod returns inscance for kelloScringlcem co ame
* @retumn Instance for helloStringltem COmpOment Fyea Param
wy artery
=) public Stoingltes get_kelloStringItem() | TP
if [helleStringltes == sull) [
#Ff Inager pre-imic code here Lo Con
Syacen. out. printlin|“Before the Breskpoinc™) !
=3 helloStringltes = mew StrimglItem|“Hello™, "Hell
Systen, out.pristlis|~“After the breskpoint™]r
ff Insert past-init ¢ode hexe
1
cetwrn hallodtcinglces:
. J—
= F** This mechod returns inscance for exitCommand compon
| Mavigaher FE * @retarn Inatance for exitCommsnd CoRpoment
wi
= i Fommand el e b ——— 1§ Jﬂ
£MNg View dvaldable > || i 3
LT ' T
| HTTP Ml P x
Debugger Conasle = buldml (debug) -~ | Debugger Console = | Trpe Vil
Connastion petelved. N o helledRiegitem J““ _|J-
betachad JibA dabugger to lecalbeet: 1140
Bsfore the Breaxpoint| -
4l i : =
Theead KeH_main stopesd of Helbbcdet jrvasE.

27 September 2006

Tutorial |

In many instances, simply having a redirected output to the host is invaluable and is a proven and familiar
way of bug hunting. However, as the number of phones and possible implementations increases, together
with the evolution of the Java ME platform, on-device debugging becomes an increasingly useful tool to

be familiar with. Together with NetBeans 5.0 and Mobility Pack 5.0, it is easily accessible to beginners and

experts alike.

28 September 2006

Tutorial |

Home of the Java Platform Debugger Architecture (JPDA)
http://java.sun.com/products/jpda

The Unified Emulator Interface (UEI) board and latest specifications and discussions
https://uei.dev.java.net/.

Sony Ericsson SDK 2.2.4 for the Java ME Platform
http://developer.sonyericsson.com/site/global/docstools/java/p_java.jsp

Home of NetBeans 5.0 with Mobility Pack 5.0
http://www.netbeans.org/

Sony Ericsson and NetBeans presented on-device debugging at JavaOne 2006. The session Power-
Point is available online (Tools, TS-5454)
http://java.sun.com/javaone/sf/sessions/main_session_pdfs.jsp

Sony Ericsson Developer guidelines cover everything that is Sony Ericsson specific and is invaluable
before and during development
http://developer.sonyericsson.com/site/global/docstools/java/p_java.jsp

Overview of the Sony Ericsson Java Platform strategy
http://developer.sonyericsson.com/site/global/newsandevents/latesthews/newsmar05/
p_platform_strategy.jsp

29 September 2006

https://uei.dev.java.net/
http://java.sun.com/products/jpda
http://developer.sonyericsson.com/site/global/docstools/java/p_java.jsp
http://www.netbeans.org/
http://java.sun.com/javaone/sf/sessions/main_session_pdfs.jsp
http://developer.sonyericsson.com/site/global/docstools/java/p_java.jsp
http://developer.sonyericsson.com/site/global/newsandevents/latestnews/newsmar05/p_platform_strategy.jsp
http://developer.sonyericsson.com/site/global/newsandevents/latestnews/newsmar05/p_platform_strategy.jsp

	Preface
	About this tutorial
	Sony Ericsson Developer World
	Document conventions
	Terminology
	Typographical conventions

	Trademarks and acknowledgements
	Document history

	Contents
	Introduction
	How does on-device debugging work?
	Why use on-device debugging?

	Getting started
	Setting up the tools
	Platform setup in NetBeans

	Debugging a project
	Creating a test project
	Testing the connection
	Setting a breakpoint
	Setting a watch
	Redirection of output streams

	Conclusion
	Further reading

